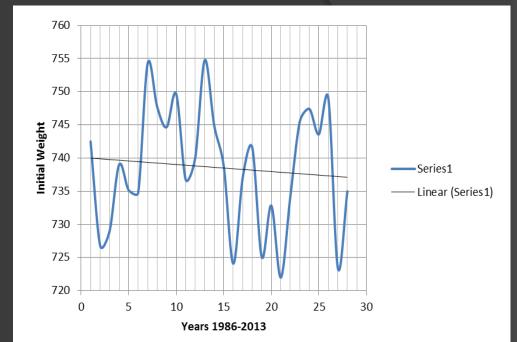
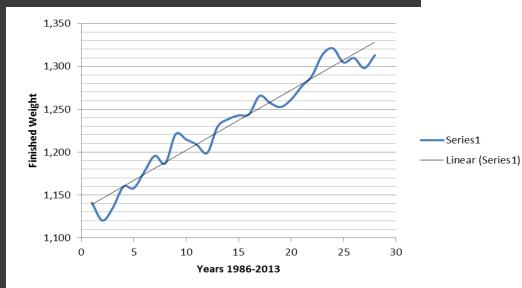
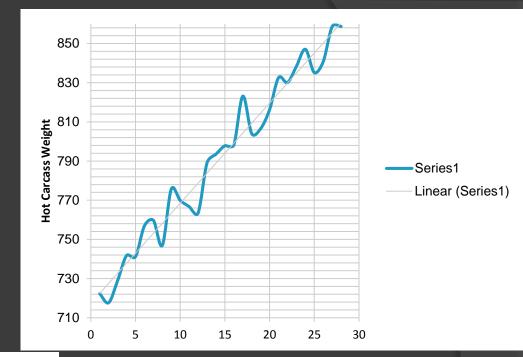
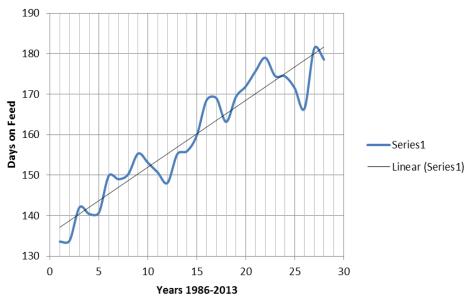
PROBLEMS WITH LARGER CATTLE AT SLAUGHTER

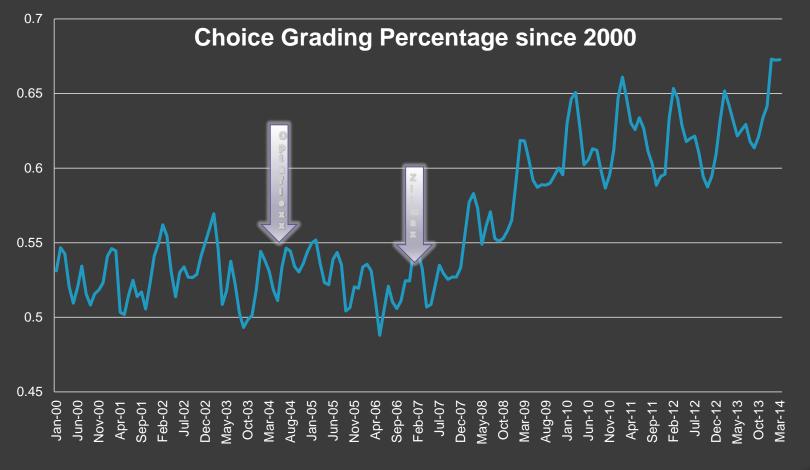





Historical Data



Professional Cattle Consultants courtesy of Shawn Walter


Historical Data

Professional Cattle Consultants courtesy of Shawn Walter

Choice Percentage since 2000

Source: Urner Barry Comtell

Two issues we have been examining associated with larger out weights

Sruising on carcasses

Fatigued cattle syndrome

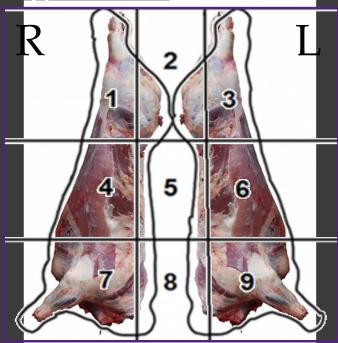
Shipping cattle to slaughter

- 1995 National Beef Quality Audit:
 - Carcass bruising → \$4.03/animal = \$114 million/year

- Adjusting for inflation, as of 2015:
 - Carcass bruising → \$6.26/animal = \$188 million/year

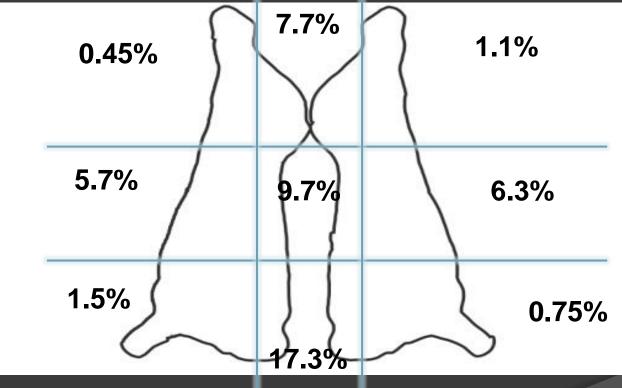
Population Descriptors

8,050 crossbred feedyard cattle

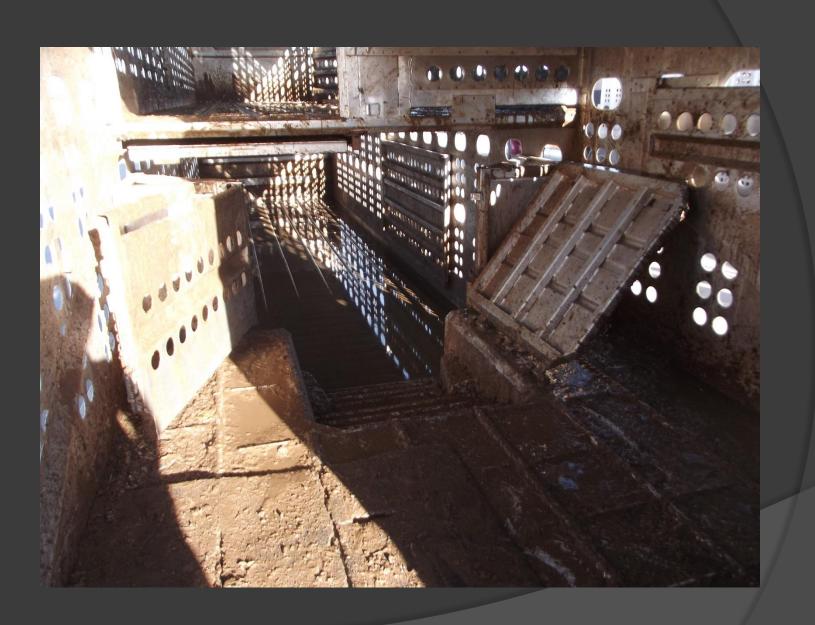

- Southwest Kansas and West Texas Feedyards
- 774 ± 84 lbs. in Weight
- 148 ± 23.5 DOF

Bruising Measurements

- The bruising scoring system from Harvest Audit ProgramTM was used to score bruises
- Bruises scored for location and severity
 - Severity = size, NOT color
- Anatomical location and severity were evaluated subjectively by one trained observer


Anatomical Location

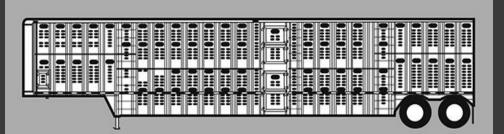
• Nine regions

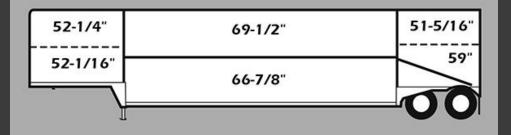


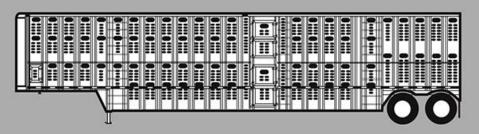
Bruising Prevalence By Location

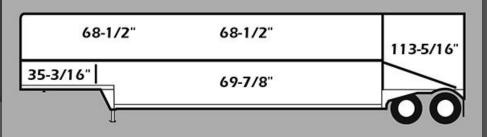
Conclusions

- The dorsal midline and central regions of the carcass are the most common locations to be bruised
- 53.5% of beef carcasses had at least 1 bruise




Conclusions


- Further research is needed to asses other factors that might have an influence on bruising prevalence of beef carcasses
 - Handling stress
 - Trailer design
 - Facilities



PSDCL-402 Cattle/Calf Model

PSDCL-406 Fat Cattle Model

Results: Trailer Type

	Combo	Fat	Unclassified	Total
Plant 1	8	117		125
Plant 2	64	32	2	98
Plant 3	86	2		88
Total	158	151	2	311

Results: Traumatic Event Prevalence by Trailer Type

	Average Prevalence
Combo	19.4%
Fat	20.4%
Grand Total	19.8%

Fed cattle welfare and transport: Where are we going ?

- Designed experiments are possible
 - Compare "fat" vs. "combo" trailers
 - Logistics are key!
 - Feedyard
 - Driver
 - Packing facility

DESCRIPTION OF A NOVEL FATIGUED SYNDROME OF FINISHED FEEDLOT CATTLE FOLLOWING TRANSPORTATION

D.U. Thomson, G.H. Loneragan, B.Bawa, S. Ensley and J.N. Henningson

J. Amer. Vet. Med. Assoc. Vol 247, No. 1, p 66-72.

Tachypnea

- Abdominal component
- Lameness
- Muscle tremors
- Reluctance to move
- Hoof wall slough

EFFECTS OF STRESS ON CATTLE WITH HEREDITARY MUSCULAR HYPERTROPHY

I.H.G. Holmes, 2 C. R. Ashmore and D. W. Robinson JOURNAL OF ANIMAL SCIENCE, vol. 36, no. 4, 1973

16 Hereford heifers; 16 Double-muscled cattle (varying ages)

- A) Nutritional Stress.
 - Food withheld 2 days prior to slaughter (Water available)

• B) Simulated Physiological Stress.

 Epinephrine, @ 6.6 mg/I00 kg injected s.c. 48 h & 24 h pre-slaughter (Ashmore et al., 1971)

• C) Exercise.

- Animals driven slowly by horse in a 300 m circular lane until exhausted
 - Run ≥ 8 km w/ five halts ~ 8 min. each for blood sampling
 - Total exercise ~1-3/4 hours.

Comparison of lactate and creatine kinase levels in cattle relative to βAA feeding status and time to relative to slaughter

	Control Pre	Zilpaterol Pre	Ractopamine Pre	Control Slaughter	Zilpaterol Slaughter	Ractopamine Slaughter	Adverse Event
Lactate, mM/L	2.71	2.27	1.89	13.1	11.5	12.0	25.6
CK, IU/L	217.1	156.2	205.5	523.6	776.4	728.7	6889.5

Lactate for hogs: 11 mM/L lactate normal at slaughter while 30 mM/L = downers

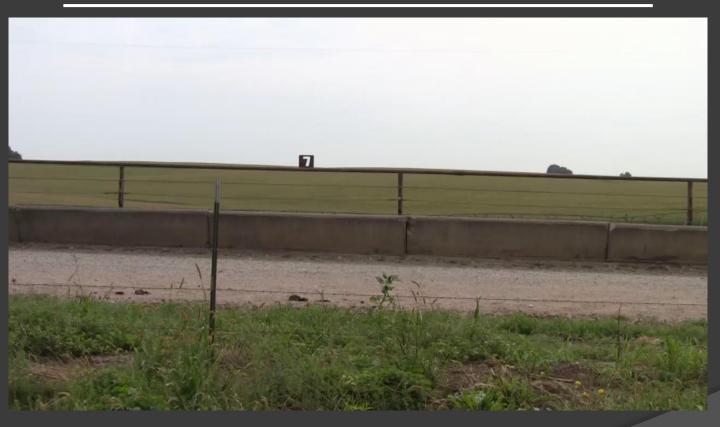
Impacts of Handling at the Time of Shipping to Harvest in Cattle Not Fed a Beta Adrenergic Agonist

D.A. Frese, C. D. Reinhardt, S. J. Bartle, D.N. Rethorst, J. P. Hutcheson, W.T. Nichols, B.E. Depenbusch, M.E. Corrigan, and **D. U. Thomson**,

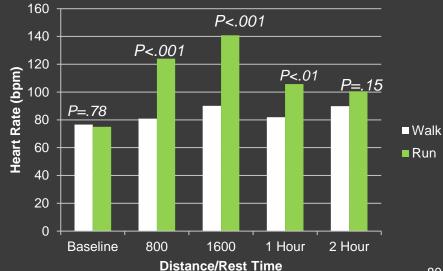
Journal of Animal Science, Accepted November 2015

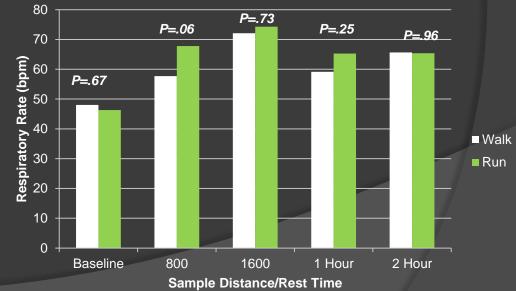
Materials and Methods

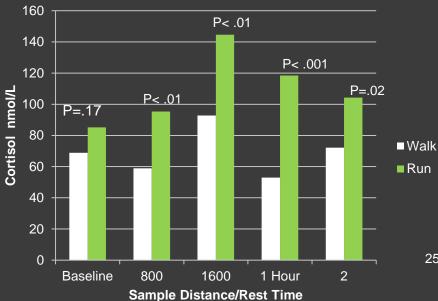
- I0 groups of 4 head black steers
 - Near market weight
 - Generalized complete block design.
- Stratified by backfat and weight
 - Pre-allotment screening
 - Blocked by walk/run paired groups
- Randomly assigned to treatment
 - Aggressive
 - Four at a time
 - Kept at a minimum of a trot
 - Low-stress
 - Four at a time
 - Kept at a walk
 - Lead rider

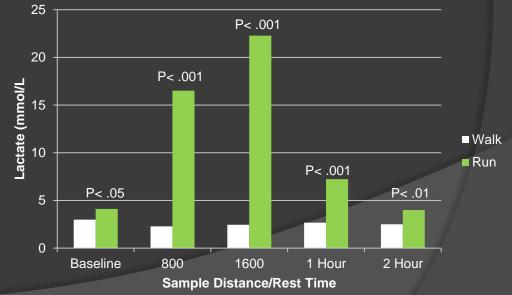

Animals handled around ~400 meter course

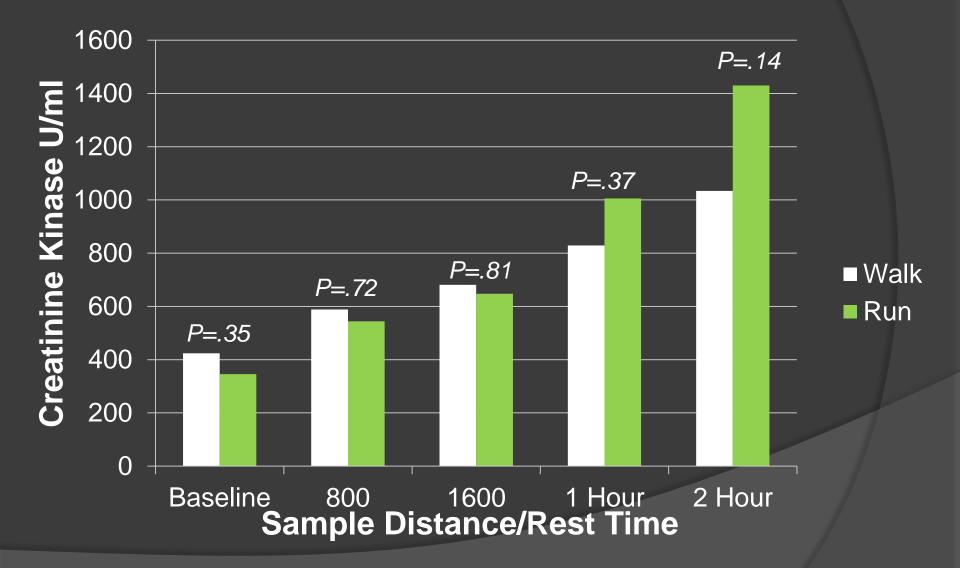
- Maximum of four laps
- Sample collections
 - Baseline
 - ~ ½ mile
 - ~ 1 mile
 - 1 hour rest
 - 2 hours rest


Low-stress Handling (LSH)

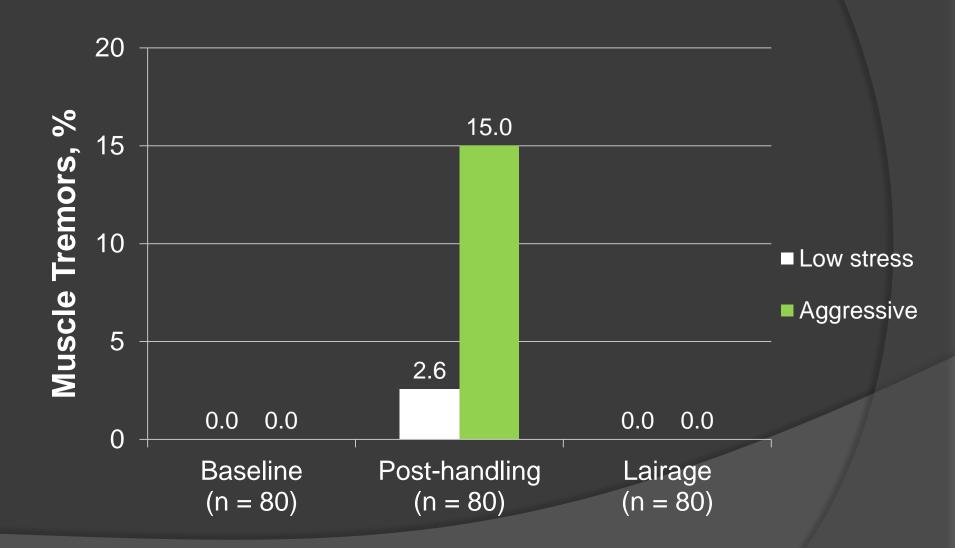

High-stress Handling (HSH)


Heart Rate


Respiration Rate


Serum Cortisol

Blood Lactate


Plasma Creatinine Kinase Values

Interaction between degree of finish and cattle handling on serum biochemistry of beef cattle.

		BASELINE		Post-handling		P Value
ltem	BF GROUP	LSH ⁸	AH ⁹	LSH	AH	Trt × Backfat
Plasma lactate (mmol/L)	THIN	2.95	4.70	2.27	18.1	P=.06
	FAT	3.00	3.63	2.63	27.3	
Blood pH	THIN	7.42	7.44	7.47	7.26	P < 0.01
	FAT	7.42	7.42	7.47	7.10	
	THIN	29.5	28.6	29.3	15.0	P < 0.01
HCO ₃ -	FAT	30.9	30.0	29.5	9.6	

Muscle Tremors

FCS: Multi-factorial syndrome

Need for education, diagnostics, mitigation

- Animal handling
- Heat stress
- Time of day at shipping
- Distance from pen to load out
- Out weight/finish of cattle
- Pen weights/crushing
- Trucking
- Time standing at plant
- Nutrition day before shipping

Are Pre-harvest Stressors Additive?

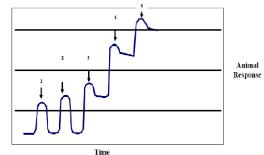


Figure 1. Adapted from Broom and Johnson (1993); Responses to a series of stimuli which, individually have moderate effects but which can be lethal in combination. 1 – Movement from home pen along alley way, 2 – Electric prod use 3 – Loading 4 – Transport 5 – Unloading.

Broom, D. M., and K. G. Johnson. 1993. Pages 87-110 in Stress and animal welfare. Chapman and Hall, Oxford, UK. Hill, J., N. Berry, and A. K. Johnson. 2007. Fact sheet: handling and loadout of the finisher pig. Pork information Gateway, Ames, IA.

Handling of finished cattle

- Gathering in the home pen
 - Moving cattle in the yard
 - Pen weighing finished cattle

- Holding pen management of finished cattle
- Staging finished cattle close to shipping facilities

Loading and transporting finished cattle

- Loading facilities
- Handling cattle in a tub or bud box
- Proper trailers for finished cattle
- Transporting finished cattle
 - Driver education

Cattle handling and comfort at packing plants

- Time spent on truck waiting for unloading dock
- Lairage and cattle comfort
 - Shade, water cooling
 - Cattle density in a pen
 - Pen surface management
 - Time spent in lairage pen

Conclusions

- Larger cattle are a different beast
- In Bruising
 - Trailer types
 - Facilities

Multi-factorial stressors culminating in FCS
 Heat, size of cattle and handling

Thank you!!!

- PAC Partners
- KSU CVM
 - Chris Reinhardt
 - Steve Bartle
 - Jamie Henningson
 - Jacob Hagenmaier
 - Tiffany Lee
 - Dan Frese
 - Jorge Simroth
 - Dave Rethorst
 - Mike Apley
- Collaborators
 - Mike Siemens
 - Todd Allen
 - Bill Thoni
 - Lonnie Busch
 - Dean Danilson
 - Brandon Depenbusch
 - Bruce Fienberg

- NCBA and State Beef Councils
 - Kansas, Iowa, Oklahoma, Colorado, Nebraska
- Elanco Animal Health
- Merck Animal Health

