Understanding Trace Minerals: Diagnostics, Reproduction & Immunity

Brad De Groot, DVM, PhD

Dillon, MT Multimin USA

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

- Part 1 Physiological Functions of Trace Minerals
- Part 2 Trace Mineral Functions in Immunity
- Part 3 Trace Mineral Functions in Reproduction
- Part 4 Trace Mineral Diagnostics
- Part 5 Trace Mineral Patterns in Cattle Production

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

Part 6 - Injectable Trace Mineral Supplementation for Cattle

Tools

Nutrition

- Fat
- Carbohydrate
- **Raw Materials** Protein
- Vitamins
- Minerals
 - Macrominerals
 - Microminerals (Trace minerals)

Nutrition

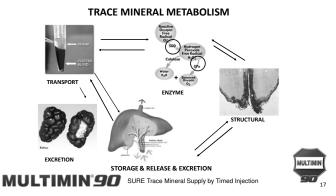
- Fat
- Carbohydrate
- Protein
- Vitamins
- Minerals
- Macrominerals
- Microminerals (Trace minerals)

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

MACRO vs MICRO(TRACE) **MINERALS**

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

Requirement in Total DM Intake				Requirement in Total DM Intake					
Mineral, %	Growing and Finishing Cattle	Stressed Calves	Dry, Gestating Cows	Lactating Cows	Mineral, ppm	Growing <u>and</u> Finishing Cattle	Stressed Calves	Dry, Gestating Cows	Lactatii Cows
Calcium Magnesium Phosphorus Potassium Sodium Sulfur	0.31 0.10 0.21 0.60 0.06-0.08 0.15	0.6-0.8 0.2-0.3 0.4-0.5 1.2-1.4 0.2-0.3 0.15	0.18 0.12 0.16 0.60 0.06-0.08 0.15	0.58 0.20 0.26 0.70 0.10 0.15	Cobalt Copper Iodine Iron Manganese Selenium Zinc	0.10 10.00 0.50 50.00 20.00 0.10 30.00	0.1-0.2 10.0-15.0 0.3-0.6 100.0-200.0 40.0-70.0 0.1-0.2 75.0-100.0	0.10 10.00 0.50 50.00 40.00 0.10 30.00	0.10 10.00 50.0 40.0 0.10 30.



Part 1 Physiological Functions of **Trace Minerals**

Eo

Mn

Enzyme	Functio	ons	Significance	
Hemoglobin	Oxygen transport Oxygen utilization by muscle Electron transport (with Cu)		Aerobic life Anything that moves Aerobic life	
Myoglobin				
Cytochrome C Oxidase				
Myeloperoxidase	Cl' + H202 🖨 0	CI [.] + H ₂ O	Bactericidal, Virucidal	
Catalase	H,O, ⇔ H,O	0+0,	Antimicrobial, Antioxida	
Trace Elements and Host Defense: R Continuing Challenges ¹²	ecent Advances and 443S-1447S, 2003.		2013 of Metalloproteins. 614-1533-6, pp. 939-963	
Mark L. Failla ³ J. Nutr. 133: 1		1 8		

Zinc

• "Zinc is required for the structural and functional integrity of over 2000 transcription factors and almost every signaling and metabolic pathway is dependent on one or more zinc-requiring proteins." (Beattie and Kwun,2004; Cousins et al., 2006).

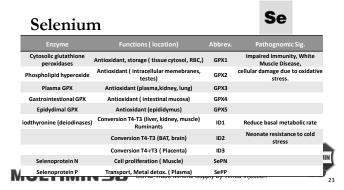
Zinc-dependent enzymes (5, 21, 22)

Cu ₂ Zn ₂ SOD
Aminopeptidase
Aldehyde hydrase
Esterase
Methylmalonyl-oxaloacetate transcarboxyl
Carboxypeptidases A and B
NAD-dependent dehydrogenases
Carbonic anhydrase
a-Hydroxyacid dehydrogenase
Alkaline phosphatase
Purine and pyrimidine nucleoside kinases
DNA polymerase and gyrase
"Zinc-finger" proteins

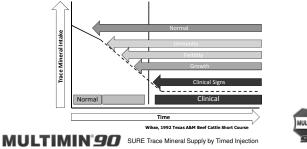
Disproportionation of superoxide Protein hydroysis Aldehyde hydration Eater hydrolysis Transcarboxylation Protein hydrolysis Dehydration of carbonic acid Oxidation of arhydroxy acids Phosphorylation Phosphorylation of nucleosides DNA synthesis Transcription regulating proteins

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

•••


Manganese

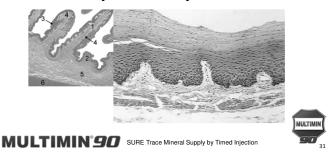
Enzyme	Functions	Significance
Glycosyltransferase	Cartilage proteoglycans, prothrombin	Skeletal malformations ,swollen joints, dwarfism, prolonged clotting time
Pyruvate Carboxylase	Lipid and Carbohydrate Metabolism	Gluconeogenesis
Mn-Superoxide Dismutase	02 ⁻ ⇔ H2O2	Mitochondrial oxidation control


MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

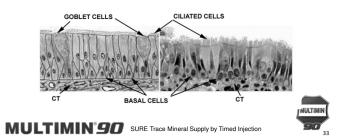
Cu Copper (units.) cance Iron Transport Anemia, Antioxidant Caeruloplasmin (ferroxidase) Cytochrome c Oxidase pamine-B-mono oxygenase Cellular Respiration Catecholamine metabolisr Anoxia, Impaired cellular immunity Behavior? Dona Hephaestin Ferroxidase II Export Fe from intestine Iron Oxidation Anemia Anemia Aortic Rupture, joint disorders, Lysyl Oxidases Desmosine cross linkages in connective tissue osteoporosis Cell signaling, Leukocyte trafficking Monamine Oxidase Oxidative deamination of monoamines Lipid Peroxidation, Vascular Tone, Impaired cellular immunity Superoxide Dismutases e.g. ZnCuSOD 02[.]⇔ H2O2 Thiol Oxidase Disulfide bond form Loss of wool and hair strength tion Tvrosinases Tyrosine to melanin Depigmentati MULTIMIN

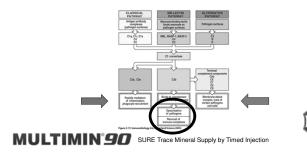
Trace Mineral Functions

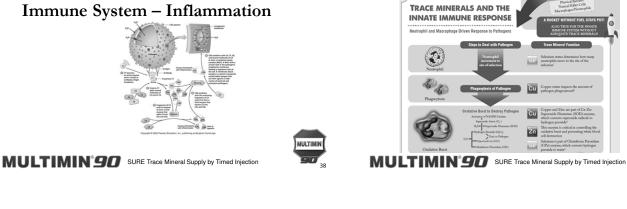
Part 2 **Trace Mineral Functions** in Immunity


Immune System Parts

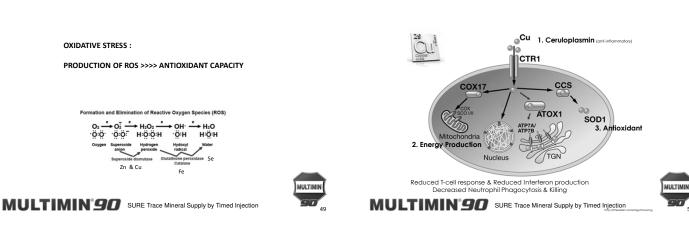
• Innate

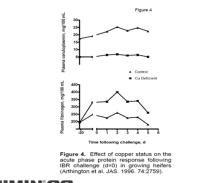

- How the body is built
 Anatomic or Physical Barriers (skin, mucous membranes) • Physiological Barriers (pH, bile acids, mucus, organic acids)
- · How the body responds
- Inflammation (vasodilators, complement, fibrin)
 Natural Killer Cells
- · Phagocytic Cells (neutrophils and monocytes)
- Acquired
 - Humoral
- Cell-Mediated
- MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection


Immune System – Physical Barriers



Immune System – Physiological




Immune System – Inflammation

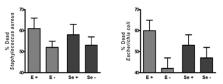
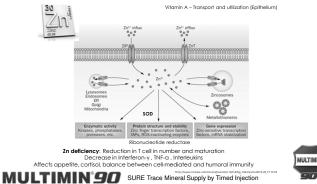
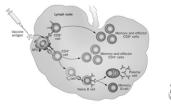
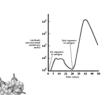



Figure 2. Percent intracellular killing by bovine neutrophils. Means represented (\pm SE); E = vitamin E and Se = selenium supplemented cows. There were no significant vitamin E x selenium interactions. Intracellular S. *aureus* killing was greater for vitamin E (P < 0.01) and selenium (P < 0.05) and selenium (P < 0.05) supplemented cows. Intracellular *E. coll* killing was greater for vitamin E (P < 0.01), but not selenium (P > 0.05) supplemented cows. Figure adapted from Hogan et al. (1990).

IULTIMIN

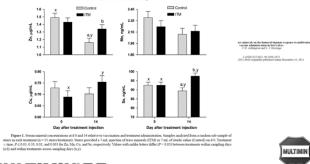

Table 1. Effect of supplemental zinc on antibody titer to BHV-1 and dry matter intake of stressed feedlot calves.¹


	[Dietary treatment	2	
Item	Control	ZnMet	ZnO	SE
BHV-1 titer3	0.49	0.72	0.55	0.09
Dry matter intake, kg4	6.32	6.65	6.60	0.14
¹ Adapted from Spears et al. 1				
² Control = no zinc, ZnMet = 28			/ kg of diet, an	d Zinc oxice
25 mg of supplemental zinc of				
3Serum neutralizing titer expre	essed as negativ	e log ₁₀ of highest d	lilution of serum	causing
neutralization of virus. Steer	s provided suppl	lemental zinc tend	ed to have high	er (P < 0.16

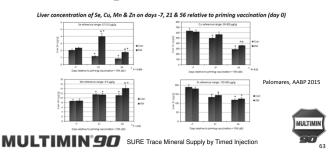
neutralization of virus. Steers provided supplemental zinc tended to have higher (P < 0.16 BHV-1 antibody titers than Control steers. ¹Control vs zinc (P < 0.11).

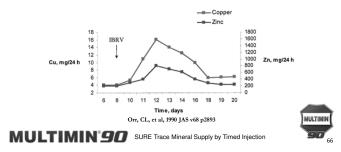
MULTIMIN[®]90 SURE Trace Mineral Supply by Timed Injection

Immune System – Acquired Action


- Quick overview of innate/acquired interaction
- https://www.youtube.com/watch?v=Bf2t8n1ibwQ

MULTIMIN[®]90 SURE Trace Mineral Supply by Timed Injection


MULTIMIN[®]90 SURE Trace Mineral Supply by Timed Injection



MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

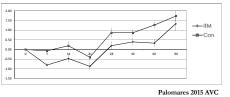
Vaccine Response and Mineral Levels

Infectious Challenge and Minerals

Multimin Improves Immune Response

- Teixeira JDS 2014 v. 97 p.4216 Phagocytosis
- Arthington JAS 2012 v. 90 p. 1996 Humoral
- Arthington JAS 2014 v. 92 p. 2630 Humoral
- Roberts PNC 2015 poster Humoral
- Palomares Vet Imm & Immunopath 2016 Humoral and CMI

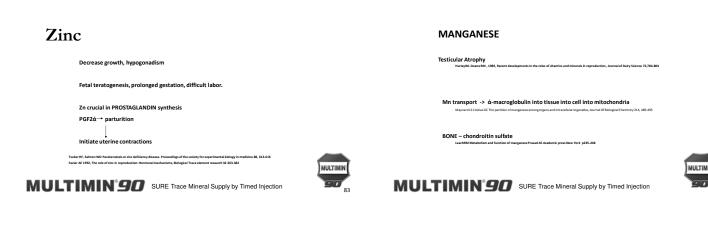
MULTIMIN[®]90 SURE Trace Mineral Supply by Timed Injection



(E) The University of Georgia

Mannheimia haemolytica titers

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection



Part 3 **Trace Mineral Functions** in Reproduction

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

Manganese (Regulates Cholesterol Synthesis)

Irregular estrus cycle – Impaired ovulation High level in Pituitary and Ovary Progesterone secretion-increase in Mn in CL

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

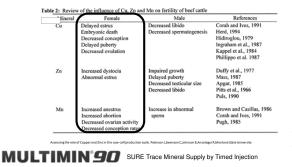
- Cytochrome c oxidase mitochondrial energy production Superoxide dismutase Ceruloplasmin
- Lysyl oxidase
- Reduced T-cell response & Reduced Interferon production Decreased Neutrophil Phagocytosis & Killing

ints and trace elements in health of transition dairy cows Jerry W. Spears ¹⁰, William P. Weis¹⁰ ² Anno editoria and a second secon

Trace Elements and Host Defense: Recent Advances and Continuing Challenges^{1,2} Mark L. Failla³ J. Nutr. 133: 1443S–1447S, 2003.

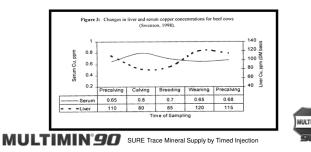
Engle, Terry E., "Effects of Mineral Nutrition of I (2001). Range Beef Cow Symposium, Paper 87,

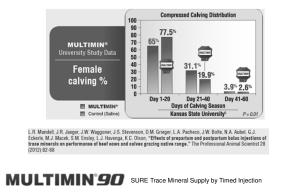
Selenium deficiency

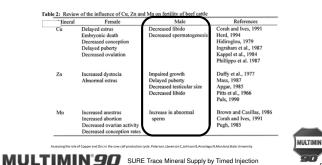

- Reduced recognition and implantation of fetus
- Degeneration of ovaries and atresia of follicles
- Retained placenta
- Reduced neutrophil function (diapedesis and killing ability)
- Cystic ovarian disease from reduced GPx activity on follicle development, steroid hormone synthesis.

Vitamin E and Selemium for Reproduction of the dairy cow, Harrison JH , Hancock D D , Conned HR , J Dairy 5d 1984, 67: 123-132 Selemium, the thyroid, and the Endocrine System, Kohrle J, Jakob F, Contempreß and Dumont JE , Endocrine Review, 2005, 26(7) 944-984

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection




Literature Review


Trace Mineral Status Not Static

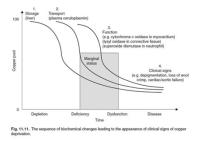
Literature Review

Part 4 Trace Mineral Diagnostics

TRACE MINERAL DIAGNOSTICS

Mineral testing - The approach depends on what you want to find out

(New Zealand Veterinary Journal 41, 98-100, 1993.)


• Clinical: Poor Performance/Disease

vs.

- <u>Sub-Clinical:</u> Deficiency
- Serum vs. Liver Tissue
- Sensible Reference Range

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

Farm Deficiency (Sub-Clinical)

- Sample: Blood (serum, plasma), Liver Tissue
- Sample Time:
 - Before anticipated deficiency:
 - Late pregnancy, early lactation, or growing calves (>6 months).
 - Results:
 - · Mean or average and individual results

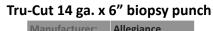
SURE Trace Mineral Supply by Timed Injection

Recommendations

- Number: 10-12 samples • Blood or Liver Tissue
- Serum or Whole blood
- Royal blue-top Vacutainer® tubes

Liver

Falcon tubes



MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

Liver Biopsy videos

- Dr. Steve Ensley IA State https://www.youtube.com/watch?v=yqFS0OwBRMk
- Dr. Jeff Hall UT State https://www.youtube.com/watch?v=3ZhezywrN8U

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

Manufacturer:	Allegiance
MWI SKU:	001093
Manf Code:	BXT2N2704X
Price:	\$40.63

Veterinary Toxicologists/Nutritionists

- Jeff Hall Utah State University • http://www.usu.edu/uvdl/
- Steve Ensley Iowa State University
- http://vetmed.iastate.edu/diagnostic-lab/diagnostic-services/diagnostic-s
- Thomas Herdt Michigan State University
 http://animalhealth.msu.edu/

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

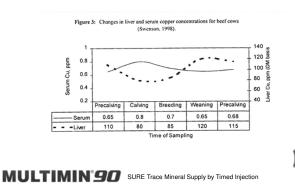
Bovine Trace Mineral Reference Ranges Diagnostic Center for Population and Animal Healt

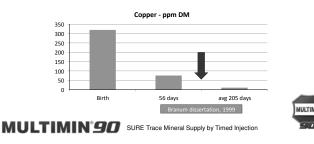
	Fe	tal-Stillborn-Neona	tal	1	Adults and Older Calv	es
	Deficient	Adequate	Toxic	Deficient	Adequate	Тох
Cobalt (ng/mL)	<0.09	0.18 - 2.3		<0.09	0.17 - 2.0	
Copper (ug/mL)	<0.25	0.3 - 1.0	5	<0.45	0.6-1.1	
Iron (ug/dL)	<20	25 -173		<60	110 - 250	
Manganese (ng/mL)	<0.4	1.0 - 4.0		<0.6	0.9 - 6.0	
Molybdenum (ng/mL)		1.0 - 15			2 - 35	
Selenium (ng/mL)	<15	20 - 70	\geq	<35	65 - 140	>1000
Zinc (ug/mL)	<0.2	0.6 - 1.75		<0.5	0.6 - 1.9	

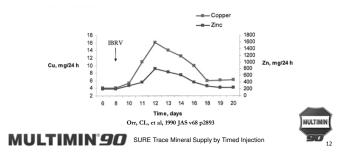
SURE Trace Mineral Supply by Timed Injection

Bovine Trace Mineral Reference Ranges	
Diagnostic Center for Population and Animal Health	
Michigan State University	

	Fetal-Stillborn-Neonatal			Grower-Adult		
	Deficient	Adequate	Toxic	Deficient	Adequate	Toxic
Cobalt (ug/g)	<0.04	0.05 - 1.0		<0.06	0.07 - 0.23	
Copper (ug/g)	<55	80 - 750		<30	50 - 625	
Iron (ug/g)	<120	165 - 1500		<120	165 - 1100	
Manganese (ug/g)	<2.5	3.0 - 18		<0.07	3.0 - 16	
Molybdenum (ug/g)		0.6 - 3.5			1.3 - 5.0	
Selenium (ug/g)	<0.6	1-4.0	>8.5	<0.4	0.7 – 2.5	>8.5
Zinc (ug/g)	<90	100 - 900		<60	75 - 600	

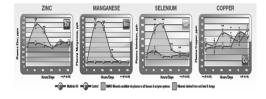

MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection


Part 5 Trace Mineral Patterns in Cattle Production


MULTIMIN'90 SURE Trace Mineral Supply by Timed Injection

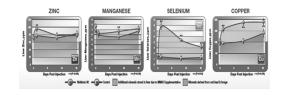
Liver copper depletion

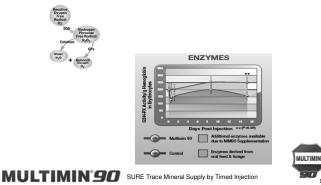
Infectious Challenge and Minerals



Part 6 Injectable Trace Mineral Supplementation for Cattle

SURE Trace Mineral Supply by Timed Injection




SURE Trace Mineral Supply by Timed Injection

With Injectable Multimin 90 • You supplement every animal you inject • You provide supplementation quickly

- You by-pass any antagonists
- You target periods of high challenge and demand for your cattle

